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ABSTRACT  Particle filters (PFs) have been widely used in speaker tracking due to their capability in modeling a
non-linear process or a non-Gaussian environment. However, particle filters are limited by several issues. For example,
pre-defined handcrafted measurements are often used which can limit the model performance. In addition, the transition
and update models are often preset which make PF less flexible to be adapted to different scenarios. To address these
issues, we propose an end-to-end differentiable particle filter framework by employing the multi-head attention to model
the long-range dependencies. The proposed model employs the self-attention as the learned transition model and the
cross-attention as the learned update model. To our knowledge, this is the first proposal of combining particle filter
and transformer for speaker tracking, where the measurement extraction, transition and update steps are integrated into
an end-to-end architecture. Experimental results show that the proposed model achieves superior performance over the
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recurrent baseline models.

INDEX TERMS Particle filter, differentiable particle filter, transformer, end to end training, speaker tracking.

I. INTRODUCTION

Speaker tracking plays an important role in speech separation [1],
speech enhancement [2] and speaker diarization [3]. The task of
speaker tracking is to estimate the 2D position, 3D position or Di-
rection of Arrival (DOA) of speakers at each time step. Generally,
speaker tracking consists of two steps, measurement extraction and
Bayesian filtering. Speaker localization can provide measurements
for speaker tracking. For speaker localization, there are two types
of methods: parametric-based methods [4] and learning-based meth-
ods [5]. One of the important parametric-based methods is global
coherent field (GCF), which is widely used for obtaining measure-
ments in speaker tracking [6]. GCF map accumulates the generalized
cross-correlation phase transform [4] (GCC-PHAT) generated by
signals from each microphone pair. Then a grid search method is
employed to find the maximum over the acoustic map. The position
producing the maximum on the acoustic map is regarded as the

position of the sound source. Compared to parametric-based meth-
ods, learning-based methods are more robust against room reverber-
ation and background noise [7] when trained on audio data recorded
from different acoustic environments. It finds the relationships be-
tween the audio features such as GCC-PHAT [8] and the speakers’
positions through neural networks.

Tracking considers the temporal variations of a speaker trajec-
tory. The tracking algorithms often focus on temporal variations,
smoothed trajectories, removing estimation outliers and compen-
sating for missing observations. The family of Bayesian filtering
algorithms is often used to address these problems, which aims
to estimate target states recurrently given the previous states and
the current measurements. There are two recursive steps in the
Bayesian filtering, namely, prediction and updating. In the prediction
step, the target states are transferred from the last time step to the
current time step through a transition model. In the update step,
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the states are updated from prior to posterior by the measurement
model. Several methods have been developed in this family, includ-
ing Kalman Filter (KF) and PE. KF assumes the transition process
and the update process to be linear and the noise to be following
Gaussian distribution. It uses Gaussian distribution to represent the
target states and updates the mean and covariance at each time
step. The performance is satisfactory in this linear Gaussian envi-
ronment but this assumption limits the generalization of this model
to complicated scenarios. Extended KF (EKF) and unscented KF
(UKEF) are proposed to mitigate the linear-Gaussian limitations. EKF
approximates the non-linear transition and update process using a
first-order Taylor series expansion. UKF employs deterministic sam-
pling to generate a set of sigma points to calculate the mean and
covariance of state distribution. Particle filter (PF) is a Sequential
Monte Carlo (SMC) method and uses a group of particles instead
of Gaussian distributions to represent the target states, which can
handle the non-linear and non-Gaussian scenarios. PF contains four
steps. At first, the particles are initialized with the same weights.
The particle states are transitioned in the prediction step, and the
particle weights are updated by the measurement likelihood in the
update step. The target states are calculated as the weighted sum
of the particle states. At last, the particles are resampled to avoid
the weight degeneracy problem. The particles with high weights are
maintained and duplicated, while the particles with low weights are
discarded.

The Bayesian filter is a first-order Markov process. The estimation
of current states depends on the state in the last time and the measure-
ments in the current time. Similarly, transformer is an auto-regressive
model when used in temporal prediction tasks such as machine trans-
lation, text summarization and tracking, whose output at current time
step also depends on the input and output in the previous time steps.
Based on this similarity, we propose a new method by combining
the two models with the following novel aspects. First, the transition
model, which is used to change the particle states in a particle filter,
is learned with a multi-head self-attention model, instead of being
pre-defined as a constant velocity model in a conventional particle
filter. Second, in the observation model, which aims to update the
particle weights according to the measurement likelihood, we use
the multi-head cross-attention to model the interaction between dif-
ferent modalities, in order to capture the relationship between the
encoded audio embedding and particle embedding. The designed
model combine the advantages of a particle filter and transformer.
1) The particle filter is not an end-to-end architecture. The measure-
ment needs to be obtained before the update step. The combination
is an end-to-end architecture where the filter and the measurement
model can be trained jointly. 2) The transition model and update
model are often preset, which are hard to generalize to complex
scenarios. The self-attention and cross-attention modules are em-
ployed as learnable transition and update models. 3) It is proved
that the algorithm priors introduced by particle filter will improve
the model performance [9]. In addition, the prediction step and up-
date step introduced in the transformer model bring explainability to
the model, as compared to training in a black-box neural network
model.

The remaining part of this paper is presented as follows: In
Section II, we summarize some related topics. In Section III, we
formulate the tracking problem. In Section IV, we present our dif-
ferentiable particle filter transformer for single-speaker tracking and
discuss the extension of this model for multiple-speaker scenarios. In
Section V, we show the experimental results of the baseline methods
and the proposed method. We also discuss the model robustness
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against noise and sequence length. In Section VI, we conclude the
paper and point out the limitation of our method and potential direc-
tions for future works.

Il. RELATED WORK

A. SPEAKER TRACKING

In the past few years, Bayesian filter based methods have been
developed for speaker tracking. Most methods adopt the paradigm
of filtering with a measurement model. In [10], an adaptive parti-
cle filter is proposed for single speaker tracking. It uses GCF as
audio measurement and uses face detection and color histogram
as video measurement. An adaptive weight mechanism is designed
to determine the importance of audio and visual modality dynam-
ically. In general, training a model for extracting measurements
requires abundant labeled data, which is not always available. Self-
supervised learning and active learning proposed in [11] and [12]
can be used to leverage unlabeled data to obtain measurements.
In [13], an algorithm similar to [10] is explored under a reverberant
and noisy environment with occluded speakers, speakers out of the
field of view, and speakers not facing the cameras. In [6], a new
dataset named CAV3D is proposed for audio-visual speaker track-
ing. Compared to the widely used AV16.3 dataset [14], CAV3D
contains recordings with stronger reverberation and more compli-
cated scenarios. In [15], particle filter is used for multiple speaker
tracking with discriminative and generative measurement likelihood.
In [16], a two-layer particle filter is proposed. Two groups of par-
ticles are passed through the audio and visual layers separately.
The particle weights are determined by the likelihood of the two
modalities.

The random finite set (RFS) based method is another branch of
Bayesian filter, which can handle the varying number of speakers.
RFS contains a varying number of elements. Both the target and
measurement sets can be represented by the RFS. At each time step,
the speaker RFS is the combination of surviving speakers, spawned
speakers from last time step, and new speakers. Here, the spawned
speakers refer to the speakers appeared in the last step and could be
potentially existing in current time step without associated measure-
ments, such as the occluded speakers. To lower the computational
complexity of RFS, the probability hypothesis density (PHD) filter
propagates the first-order moment of the multiple target state dis-
tribution. It has a linear Gaussian form, representing the target in
Gaussian distribution and SMC form, representing the target with
particles. In [17], the PHD filter is used for tracking unknown and
varying number of moving audio sources. In [18], the SMC PHD
filter is employed with the help of mean-shift to move particles to
the local maximum. There are several works [19], [20] that com-
bine particle flow with PHD filter while particle flow can help to
transfer the particles from prior distribution to posterior distribution.
Unlike the PHD filter, multi-target multi-Bernoulli (MeMBer) fil-
ter propagates posterior density function rather than the first-order
moment. The target state is represented as Bernoulli RFS, which is
empty or has a single element. In [1], generalized labeled Bernoulli
filter (GLMB) is employed to solve the problem of multi-modal
space-time permutation and deal with the problem of varying number
of speakers. In [21], the Poisson multi-Bernoulli mixture (PMBM)
filter is proposed for multi-target speaker tracking, which employs
Poisson distributions to represent undetected targets and employs a
multi-Bernoulli mixture to represent detected targets with different
data association strategies.
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B. DIFFERENTIABLE BAYESIAN FILTER Self-Attention
There have been some recent works that combine Bayesian filter - Transition PO VU o
and deep learning models for temporal prediction tasks. In [22], 1 ¢ bt
a backprop Kalman filter is proposed, which takes the raw image Resampling

as the input and outputs the tracking results. In [23], a dynamic
weight mechanism is jointly trained with backprop Kalman filter
so that the importance of different modality can be determined by
the quality of the measurements. There are also some works that
combine neural networks with particle filter. In [24], a differentiable
particle filter is designed with a semi-supervised learning strategy
to reduce the requirement of labeled data. In [25], particle filter is
combined with simultaneous localization and mapping (SLAM) for
visual navigation. In [26], a particle filter network is proposed for
visual localization, which encodes the measurement model and the
particle filter in a single neural network. In [9], a similar architecture
has been implemented, where the training strategy is formed in three
steps, with two steps on training the transition and measurement
models, and the final step on end-to-end learning of the whole
model. In addition to the conventional neural network, a recurrent
neural network, such as long short term memory (LSTM) and gated
recurrent unit (GRU), can also be combined with a particle filter.
In [27], PF-LSTM and PF-GRU are proposed, which replace the
deterministic update with stochastic Bayesian update. In [28], par-
ticle transformer is proposed, which leverages weighted multi-head
attention for differentiable resampling. Compared to [26] and [9],
our model extends the localization (tracking) task to multiple objects
for the first time. Compared to [27], our model integrates particle
filter and transformer for object tracking for the first time, while
in [27], particle filter is combined with recurrent neural network.
Compared to [28], we combine particle filter and transformer for
object tracking, while in [28], the two models are combined for dif-
ferentiable resampling. In our proposed model, the particle states are
also changed in the observation model [27], which is different from
a vanilla particle filter where the particle states remain unchanged in
the observation model. The design of the differentiable particle filter
is used to provide a training strategy, such as using weighted particles
for state representation and particle resampling.

lil. PROBLEM FORMULATION

The whole algorithm design is based on particle filter framework.
In a particle filter, N particles {w;;, x,;}), are used to represent
the target states, where X, ; denotes the state of the i-th particle at
time 7, containing the DOA d,; and distance §,;, with w,; being
its corresponding weight. A standard PF has four steps: initializa-
tion, prediction, update and resampling. In the first step, all particle
weights are initialized at t = 1 to be the same:

{wi ity = 1/N (1
In the prediction step, the particle states {w ;, x,,,v}?’: , are transited

from the last time step to the current time step {w, ;, X1}, using
the transition model:

X1~ T (Xp11X0) )
where T is the transition model and is assumed to be a constant
velocity model.

In the update step, the measurement likelihood [/ is first calculated:

I =MZ11X41) 3)
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Cross-Attention
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FIGURE 1. Overview of the model architecture, where a learned transition
and update model is proposed. Here, s; is the speaker state at time ¢ and
Z; is the measurement at time ¢.

where Z,, is the observation set, and M is the measurement model.
The particle weights are updated by the measurement likelihood:

li - wy
Yol
Zk:o k- Wrk

The target state X is obtained as the weighted sum of the particle
states:

“

Wyy1,i =

k
Xy = E Wyt * Xi41,i ©)
i=1

After some iterations, particle filter may suffer from the weight
degeneracy problem, where the target state is determined by a few
high-weight particles. Therefore, the last step is particle resampling,
where the particles with higher weights are duplicated while the
particles with lower weights are discarded. The resampled particles
are assigned with identical weights.

In this paper, we explore using audio signals captured by mi-
crophones for speaker tracking. Given the binaural audio waveform
{a;, a,} captured by two microphones, where a;, a, € R with |a]
being the length of the waveform, the task of speaker localization
aims to predict the direction of arrival (DOA) of the sound sources
from the speakers with respect to the microphone array at each time
step.

We use GCC-PHAT as the audio feature, which is commonly used
in speaker tracking and calculated as:

oo STFT,(t, f)STFT(t, f)
Gi,j(l‘, 'L') = / !

S (6)
~ |STFT,(, f)| ’STFT;;(t,f)

where G € RT*C, with T being the temporal dimension, C is the
number of coefficients of delay lags, t is the time delay lag, (i, j)
denotes a microphone pair, STFT represents Short Term Fourier
Transform with (¢, f) being time frame and frequency bin indexes,
respectively, and * denotes complex conjugate.

IV. PROPOSED METHODS

In this section, we show an end-to-end differentiable architecture
which combines particle filter and transformer for single speaker
tracking. Then, we discuss the extension of the proposed model to
the problem of multi-speaker tracking.

A. ATTENTION-BASED DIFFERENTIABLE PARTICLE FILTER

The overview of the model can be seen in Fig. 1. The self-attention
acts as an implicit learnable transition model with which the parti-
cle states are transferred to the next time step without applying an
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FIGURE. 2. Architecture of the proposed model architecture. GCC-PHAT of
the two-channel audio is calculated and split as the input to the encoder.
The decoder takes the particle embedding as input and performs
self-attention and cross attention with the encoder output as the transition
model and update model, respectively. Initially the colors of particles are
the same, indicating the same weights. After the update, the particles are
denoted by different colors with deeper color indicating higher weights.
Finally, soft-resampling is used to select important particles.

explicit motion model to the particles. The cross-attention module is
used to calculate the measurement likelihood.

The overall architecture of our model is shown in Fig. 2, which
follows the paradigm of a vanilla transformer. The GCC-PHAT G
is firstly added with the positional encoding Gpos € RT*¢ along the
time dimension and input to the transformer encoder. In the trans-
former encoder, the input goes through the multi-head self-attention
(MSA) layers and the fully connected layers with the residual con-
nection. This can be described mathematically as follows,

Z°’ = G + Gpos @)
Zl

LN (MSA(Z""))+2Z"", I=1...L ®)

Z'=LN(MLP(Z'))+Z', I=1...L 9)
where Z is the intermediate state after MSA layers and Z is the output
of one transformer encoder module. Z/ JZP e RTF with T being the
length of the temporal feature and F being the feature dimension,
[ is the index of the transformer module, L denotes the number of
repeated transformer encoder modules, MLP represents multi-layer
perception, and LN is the layer normalization. The MSA is defined
as,

MSA (Z) = Concat(Hy, ..., H,)W, (10)
where H,,, » = 1, ..., n, are computed as
H, = softmax <w> ZWy, (11)
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where W, € Rloxd W, € RTexde Wy e R&*% and Wy €
R% >4 are trainable matrices. 7, is the sequence length and d, is
the feature dimension. In the transformer decoder, the particles are
represented as the embedding matrices S, € RY*P, where N is the
number of particles and D is the hidden dimension of the particle
embedding. Each particle embedding implies the particle position.
An advantage of the proposed model is that, as the feature extractor,
the transformer encoder can be optimized over a sequence of audio
frames instead of a single frame [22].

The particle embedding S, is firstly added with the positional
encoding Spps € R¥*P and then passed through the self-attention
layer. The self-attention layer is applied on the first dimension of
the particle embedding, which is regarded as the transition model in
a particle filter. The transition of one particle state depends on the
self-attention with other particle embedding,

St — Sr + SPOS
Siv1 =LN(MSA(S,)) + S,

(12)
13)

After the self-attention transition, particle states are transferred from
S; to S;4. Then cross attention is used between the predicted par-
ticle states with the output of the encoder. The encoder output also
contains corrupted information for DOA estimation, such as clutter,
outliers and noise. The multi-head cross attention layer (MCA) is
regarded as the measurement model and the output of the encoder is
regarded as the measurement.

Si+1 = LN (MCA (S;11, Z")) + Si41, (14)
where the MCA operation is defined as
MCA (S, Z) = Concat(H, . .., H,)W, (15)
where H,, w = 1, ..., n, are computed as
H, = softmax (W) Wy, (16)
Jdx o

where W,, Wy, Wi and Wy, are defined similarly as earlier. A fully
connected layer is used to calculate the measurement likelihood in
terms of the particle embedding.

M(Z4118:41.) = MLP (S,41,) (17
The particle weights are updated according to the likelihood:
Wipti =M (Zop1 i1841) - g (18)

The corresponding DOA posterior d,,;; € R*° are derived by an

MLP layer in terms of the updated particle states:
di+10=MLP (S11,) (19)

The final DOA posterior d, ; € R3 is the weighted sum of the DOA
posterior over all the particles:

N
diy = Z Wi,y (20)
i=1

Finally, the DOA is obtained as the peak index of the posterior:

dyy = arg max (d;,41) (21
J

where d;,y; is the j-th element of the vector d,y;, and j =
1,...,360/¢ with € being the angle resolution, set to € = 1° in our

experiments.
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B. RESAMPLING

The resampling step selects and duplicates the important particles
and discards the unimportant ones. However, the resampling step is
not differentiable. To integrate the resampling step into the trans-
former, similar to [27] [26], we employ the soft-resampling. In
soft-resampling, we resample the particles from a new distribution
q instead of the original distribution p, where ¢ is the combination
of p and uniform distribution ¥ = 1/K with 0 < o < 1 being the
hyperparameter to balance the two distributions, as follows

q() =ap(-)+ 1 —au(-)

Instead of using equal weights for all the particles, the new particle
weights are calculated as follows:

(22)

YR O — (23)
qi) aw'+ (1 —-a)l/K

C. EXTENSION TO MULTIPLE SPEAKERS

The extension of the proposed method to the problem of tracking
multiple speakers follows the setting in a conventional particle filter.
In the conventional particle filter, several groups of independent
particles are used for different objects. In this paper, as an example,
we consider the scenario of tracking two speakers. To this end, two
independent groups of particles are employed as input to the decoder
of the transformer. For the self-attention based transition step, the
particles from the two groups are processed independently with an

attention mask ( (I) (I) ) to ensure the transition of different groups

does not interfere with each other, where I is an identity matrix whose
dimension is identical to the number of particles used for tracking
each speaker.

The cross attention update is the same as that of (14)—(19). Com-
pared to the single speaker tracking, multi-speaker tracking has a
data association step, in which the measurements are matched with
the speaker states. The data association is hidden in the cross at-
tention update step and each particle embedding automatically finds
the related measurements. When obtaining DOA, (20) and (21) are
performed for each group of particles. In the multi-speaker tracking
scenario, the number of the speakers may be varying with time.
Thus, we add a binary classifier to estimate whether the particles
correspond to an existing target,

E i =MLP (S,11) (24)

where B € R¥? in the two-speaker scenario, which is rescaled us-
ing the softmax function to obtain the predicted speaker existence
possibility. After obtaining the DOAs of multiple speakers and the
existence probability by averaging the particle states according to
their weights, the Hungarian algorithm [29] is used to match the
estimated DOA with the ground truth. Similar to [30], the matching
strategy is applied on the basis of the speaker existence probability
and the DOA estimation, as follows

U(HC’(Z)’ y{) = - l{cg;é{a}ﬁ (U(é‘), CZ) : )‘fcls
R (25)
+ l{c[#z}EDOA (V:, da([)) - ApoA

where 1(., 24 is an indicator function, taking the value of 1 if ¢, is
not empty. ¢ is the index of the ground truth and o (¢ ) is the matching
index. M, () = (Ey (), do(r)) and y; = (c;, 1;) where ¢, € {0, 1} in-
dicates the speaker existence and r; is the ground truth DOA. Lpoa
is the absolute difference between d;(;) and r;. Ags and Appa are
the hyperparameters to balance the classification error and the DOA
error.

VOLUME 5, 2024

At last, soft-resampling in terms of (23) is performed for each
group of particles, independently. The overall process for multi-
speaker tracking is shown in Algorithm 1.

D. LEARNING OBJECTIVE

For the DOA distance loss, we cannot use the distance between
the predicted DOA and the ground truth DOA. This is because the
arg max operation in (21) is not differentiable. Some works [31], [32]
treat the DOA estimation task as the classification task and use the
cross entropy loss. With a resolution €, the DOA space is split into
360/€¢ classes. However, the cross entropy loss cannot describe the
relationship among different classes. For instance, the error between
0° and 180° should be larger than that between 0° and 90°. However,
the cross entropy loss will treat them equally. To model the relation-
ship between different classes, inspired by [5], we encode the ground
truth r with a Gaussian distribution centered on ground truth DOA,

ry ~N(r,0?) (26)

where ry, are the v-th element of ground truth of the DOA r. We
generate the Gaussian distribution centered on the ground truth DOA
with resolution € = 1° and covariance o> = 1°. Then we use the
earth mover’s distance (EMD) loss [33], used originally for speech
quality evaluation [34], to measure the difference between the DOA
posterior and the Gaussian distribution of the ground truth, as follows

360/¢

Lewp(d) =Y (dy —1y)
=1

27

where dy, and ry are the v/-th element of DOA posterior d,,; and
ground truth r, respectively.

Besides, we adopt the evidence lower bound (ELBO) loss [27] to
maximize the particle likelihood:

1 N
Lg o = — log N ZP (rr [ Sii, Zler’ )

i=1

(28)

where r, is the ground truth DOA, S, is the updated particle embed-
ding. For the likelihood, we adopt p(r; | S1..i, ZF,, ) = Lewp(d;) to
calculate the EMD loss between particle states and the ground truth
Gaussian distribution. The EMD loss provides a macro optimizing
strategy to improve the model performance while the ELBO gives
a micro optimizing strategy to focus on the particle estimation. The
learning objective is the combination of the ELBO loss and the DOA
distance loss with the hyperparameter A:

L=x Lgpo+ 1 —21)Levp (29)

For the multiple speaker scenario, the cross entropy loss Lcg(E, ¢) is
added for class prediction, which is defined as follows,

M—1

Lep(B,0) =) —(cxlogE(k, 1) + (1 — c) log E(k, 0))

k=0

(30)

where E(k, 0) is an element of the matrix E at the position of the k-th
row and first column, likewise, E(k, 1) represents the element at the
k-th row and second column.

V. EXPERIMENTS

In this section, we first evaluate the performance of the proposed
model, as compared with the baseline models on single speaker
tracking. We then compare the robustness of different models against
sequence length and additive audio noise. At last, we show the model
performance on multi-speaker tracking.
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Algorithm 1: Attention-Based Differentiable Particle Filter for
One Time Step.

Input: The maximum number of speakers M,
GCC-PHAT G
Output: The number of speakers S. The DOA of
speakers d}, CZQ, e ds

1 Initializing particle embedding S}, ...,SM (¢t = 0) or
inheriting from last time step (¢ > 0);

2 Encoding G following Eq. (8) and (9);

sfor k=1,..., M do

4 Self-attention transition for particle embedding
L Sf following Eq. (12) and (13);

5 Cross-attention update following Eq. (14);

6 Weight updating following Eq. (17) and Eq. (18);

7 Calculating the possibility of speaker existence
following Eq. (24) and estimating S

8 According to S, calculate the corresponding DOA
dy,ds, ...,dg following Eq. (19), (20) and (21);

9 Soft-resampling following Eq. (23);

10 return S, d}cﬁ, ...,Js;

A. DATASET

In this paper, we focus on audio speaker tracking. Most speaker
tracking datasets (2 hours for the AV16.3 dataset [14], 2 hours for
the CAV3D dataset [6], and 0.5 hours for the AVDIAR dataset [35])
have limited size and do not support the training of deep learning
models. Therefore, we resort to a simulated dataset. We use Two Ear
auditory model' for simulating the binaural audio with moving sound
source due to its easy implementation. Binaural audio has been used
for localization, tracking and navigation [36], [37]. The dataset is
simulated within a 2D room of 20 x 20 squared meters. The initial
position of the speaker is chosen randomly within the room. The
walking speed of the sound source is set to three meters per second to
mimic the normal walking scenario. The direction of the velocity is
randomly generated and fixed, so the sound source moves with a lin-
ear and constant speed. We have created almost 33 k trajectories with
each trajectory containing 50 k sampling points. The speech corpus is
from Librispeech [38]. The training set is from train-clean-360. The
development set is from dev-clean and dev-other. The test set is from
test-clean and test-other. We cut each speech clip to 10 seconds and
input to the Two Ears auditory system with a trajectory to generate
binaural audio with a sampling interval of 368 with a sampling rate
of 44100. We collect around 33 k spatial speech clips of more than
100 hours in total. We use 27 k clips as the training set, 3 k clips as
the development set, and another 3 k clips as the test set.

For the multi-speaker tracking scenario, we randomly choose two
audio clips from the single-speaker dataset and add their waveforms
to simulate the two-speaker scenario. In this way, we create a corpus
of another 100 hours of speech data. Together with the single-speaker
corpus, we use the blended corpus to train the multi-speaker tracking
model. The number of audio clips in the training set, the development
set and the test set is 60 k, 6 k and 6 k, respectively.

![Online]. Available: https:/github.com/TWOEARS/TwoEars
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B. IMPLEMENTATION DETAILS

For GCC-PHAT calculation, we split each audio clip into chunks
with a hop size of 368 to match the simulation interval. For each
chunk, the GCC-PHAT is calculated by including six previous
chunks and six latter chunks. The n_fft is set to 1024 and the hop
size is set to 320. The number of coefficients of the delay lags is set
to 96.

Both the transformer encoder and decoder use one transformer
module to mimic the process in a particle filter. The dimension
of the query, key and value is 128. The dimension of the latent
representation from the fully-connected layer is 256. The number of
heads for the multi-head attention is 4. For the particle filter, we use
30 particles with 128 dimension for the latent representation. « for
soft-resampling is set to 0.2.

For model training, we run the Adam optimizer for 100 epochs in
total, with the learning rate set to Se-4 for the initial 50 epochs, and
then decreased for the remaining 50 epochs with 0.1 learning rate
decay. We adopt the early stop mechanism with 30 patience. For the
Hungarian matching, A.; = 3 and Apps = 5/180. For the learning
objective, the hyper parameter A is set to 0.5. For the multiple speaker
scenario, we adopt the EMD loss and cross entropy loss. We discard
the ELBO loss to reduce the computational cost.

C. EVALUATION METRICS
‘We use the mean absolute error (MAE) and Accuracy to evaluate the
model performance. The MAE is calculated as:

1 < R
MAE = —~ % g(n — Adym = riml) 31

t=0 m

where T is the number of time steps and M is the number of speakers.
MAE is the average error along the time dimension within one tra-
jectory, and is smaller than 180 degrees. The Accuracy is calculated
as the percentage of the trajectory whose MAE is smaller than three
degrees. For the multi-speaker scenario, we also report the cardinality
error, calculated as the absolute value of the estimated number of
speakers and the ground truth.

D. COMPARISON WITH OTHER METHODS

We compare the proposed model with other temporal prediction
models including the vanilla RNN, LSTM, and GRU, and other
models which combine RNN and PF such as PF-LSTM and PF-
GRU [27]. We choose the RNN-based models as baseline methods
as they estimate the states in the current time step based on the
current measurements and the previous states, in a similar spirit to
the Bayesian filters. When re-implementing the baseline models, we
choose a proper dimension of the embedding to ensure that different
models have roughly the equivalent number of model parameters.
The GCC-PHAT is directly input to the RNN-based method to obtain
DOA.

The experimental results on the simulated dataset are shown in
Table 1. It is observed that the proposed particle filter transformer
outperforms the baseline methods by a large margin. The transformer
encoder can provide extracted features and the transformer decoder
combined with particle filter can estimate the speaker state. LSTM
and GRU offer a better performance than the vanilla RNN as they
have better ability in modelling longer sequences through different
gates for remembering important information and discarding redun-
dant information.
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TABLE 1 Experimental Results on the Simulated Dataset

MAE (°) Accuracy (%)
RNN 44.31 49.94
LSTM 13.09 78.63
GRU 10.27 80.78
PF-LSTM [27] 23.24 69.42
PF-GRU [27] 22.86 70.75
Ours 4.40 95.17

The bold numbers denote the lowest MAE or the highest Accuracy.

TABLE 2 Ablation Study

MAE (°) Accuracy (%)
w/o End2End Training 6.33 89.85
w/o Temporal Prediction 4.44 95.33
Ours 4.40 95.17

The bold numbers denote the lowest MAE or the highest Accuracy.

E. ABLATION STUDY
We conduct the ablation study to show the effectiveness of the pro-
posed end-to-end attention-based particle filter. The results of the
ablation study are shown in Table 2. The first model uses transformer
to obtain the measurements and uses the conventional particle fil-
ter for tracking. In each training iteration, only the transformer is
optimized. For the transformer to obtain measurements, we use the
transformer encoder and add an [CLS] token at the beginning of the
GCC-PHAT. We use the first position of the output and pass it to a
classification layer to get the DOA. We adjust the dimension of the
hidden layers to match with the models in Table 1. It is observed
that the performance of the two-stage model is not as good as the
one-stage end-to-end model, which shows the effectiveness of the
end-to-end model. The second model uses the same architecture as
the proposed model but without temporal dependency. At each time
step, new particles are generated as input to the decoder instead of
using the resampled particles from the last step. The performance
of the second model is better than that of the two-stage model and
shows the competitive performance of our proposed model. The
reason is that the feature contains the information from both previous
and latter audio chunks. As explained in Section V.B, one chunk is
calculated with six previous chunks and six latter chunks. While the
input features already incorporate temporal information, the impact
of temporal prediction effectiveness is not immediately apparent.
We also show how the change in the number of particles affects the
model performance in Table 3. It can be seen that the model achieves
the best Accuracy with 30 particles and gives the lowest MAE er-
rors with 10 particles. A larger or smaller number of particles may
lead to performance decline. In addition, we integrate differentiable
resampling mechanism [28] with the proposed model and compare
its performance with that of the model using soft-resampling. The
experimental results are shown in Table 5. We can find that the
performance of the model leveraging differentiable resampling is
not as good as that using soft-resampling. Both the differentiable
resampling method and our proposed model use transformer blocks.
However, the cascaded Transformer architecture is hard to converge
and achieve optimal performance. While the model [28] leverages
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TABLE 3 Impact of the Number of Particles on the Performance of the
Model

No. Particles MAE (°) Accuracy (%)
5 4.86 94.63
10 4.28 94.57
20 5.43 94.35
30 4.40 95.17
40 5.56 92.73

The bold numbers denote the lowest MAE or the highest
Accuracy.
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FIGURE 3. Impact of sequence length on the performance of the model.

fully connected layers as the transition and update models, which are
more light-weighted and suitable for integrating with differentiable
resampling. The soft-resampling mechanism is a model-free archi-
tecture and fits better with our transformer-based model.

F. THE IMPACT OF SEQUENCE LENGTH

In this section, we explore the impact of the sequence length on
the model performance. We test three well-performing models in
Table 1, LSTM, GRU and our proposed model under the sequence
length of 100, 200, 300, 400 and 500, and the results of MAE and
accuracy are reported in Fig. 3. It can be seen that the performance
of LSTM and GRU drops significantly (Accuracy decreased from
78% to 50% for LSTM and accuracy decreased from 80% to 73%
for GRU) with the increase of the sequence length. While the perfor-
mance of our model is relatively stable against the long sequence
with the Accuracy maintained in around 95%, which proves that
our model has strong modeling and memory capacities over long
sequence.

G. THE IMPACT OF NOISE

The simulated dataset we generate does not contain noise in the bin-
aural audio. However, in real applications, audio signals captured are
often contaminated by noise. Therefore, in this section, we explore
the model robustness against noise. To this end, we add noise to the
development set and the test set of the simulated dataset. The noise
we use is from DEMAND [39], which provides noise from different
scenarios including office, park, sports fields, and so on. The noise is
added to the magnitude spectrum with Signal-to-Noise Ratio (SNR)
of 20 db, 10 db, 0 db and —10 db, respectively. The experimental
results are demonstrated in Table 4. We use the pre-trained models
on the clean training set and evaluate it on the noisy version of the
test set without finetuning the model. It is observed that our model
performs better than the baseline models on all the SNR levels. The
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TABLE 4 Experimental Results Against Noise Where * Denotes the Model That is Trained on Gaussian White Noise Data

20db 10db 0db -10db
MAE (°) Accuracy (%) MAE (°) Accuracy (%) MAE (°) Accuracy (%) MAE (°) Accuracy (%)
RNN 62.02 35.96 69.89 29.17 78.33 20.88 83.51 13.63
LSTM 50.97 43.47 63.21 33.36 75.48 21.78 83.32 13.44
GRU 51.60 44.40 65.20 32.66 75.87 21.54 84.36 12.18
PF-LSTM [27] 57.95 39.68 67.31 31.27 77.41 21.49 83.44 13.38
PF-GRU [27] 60.89 38.34 70.37 29.78 80.00 20.22 86.44 12.06
Ours 18.39 78.86 32.03 63.10 48.53 43.96 65.50 25.73
Ours* 11.92 85.86 17.71 78.88 27.08 68.39 38.05 55.00

The bold numbers denote the lowest MAE or the highest Accuracy.

TABLE 5 Experimental Results of Different Resampling Methods

TABLE 6 Experimental Results on the Two-Speaker Scenario

Resampling MAE Accuracy Card MAE (°)
Soft resampling 4.40 95.17 DETR [30] + PMBM [21] 0.90 31.48
Differentiable resampling [28] 12.17 87.67 Ours 0.35 31.91

performance of RNN is the worst due to its simplest architecture.
Other models offer performance in a similar level. On the SNR level
of 20 db, 10 db and 0 db, our model outperforms the baseline models
to a large extent (accuracy increased almost 20% on 20 db and 10 db,
and increased almost 10% on 0db), which shows that our model is
more robust to additive noise. On the SNR level of —10 db, the power
of the noise is greater than that of the speaker audio and this scenario
is very challenging. The performance of all models is not satisfactory.
However, in the more noisy environment our model still obtains 10%
increased accuracy for the noise level at —10 db compared to the
recurrent baseline models.

To increase the model robustness against noise, we also train the
model on the noisy dataset. Specifically, we add Gaussian white noise
to the training set, with the SNR level at 20 dB. We test the model
on the noisy dataset contaminated by DEMAND [39]. It is observed
that the model performance (Ours*) improves as the Gaussian white
noise is the most general form. The model trained with Gaussian
white noise tends to be generalized to the specific noise.

H. VISUALIZATION

To present the tracking results more intuitively, we show the trajecto-
ries and particle states in Fig. 4. As the DOA classification resolution
is 1°, the estimated DOA are not in decimal points, and the estimated
trajectories appear to be saw-toothed. It can be seen that at the start
period, the particles are scattered in different positions, which are
similar in conventional particle filters. After some iterations, the par-
ticles converge to certain points. Although several outliers exist (the
impulses in the third and fifth sub-figures), the estimated trajectories
are close to the ground truth trajectories.

I. RESULTS ON MULTI-SPEAKER SCENARIO

‘We report the results of two-speaker tracking in Table 6. We compare
the baseline method DEtection TRansformer (DETR) [30] combined
with the Poisson multi-Bernoulli mixture (PMBM) filter [21], which
is a two-stage process. DETR [30] is used to extract audio mea-
surements. The vanilla DETR, originally proposed for the task of
object detection, has a classification head and a localization head to
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Card Denotes the Cardinality Error.

determine the position of the bounding box. The Hungarian matching
module is used for bipartite matching during the training stage,
which is not differentiable. We modify the classification head to
a binary classifier to determine the speaker existence, and modify
the localization head for classification of 360 classes related to the
DOA angles. DETR is trained on the simulated two-speaker dataset.
PMBM is used for state estimation. Compared to P, PMBM can
estimate the varying number of speakers while PF needs to set the
number of speakers as a prior. PMBM has been used for vehicle
tracking [40] and multiple speaker tracking [41]. PMBM takes the
audio measurements from DETR [30] and estimates the number of
speakers and each speaker’s DOA.

In the baseline of PMBM filter, the survival probability was set to
0.99 and the birth model is set to a Gaussian mixture. The detection
probability is set to 0.9. Both the baseline method and our proposed
model can be used for estimating the number of speakers. It is
observed that the proposed method performs competitively with the
baseline method in MAE and outperforms the baseline method in
cardinality estimation. It can be seen that the multi-speaker tracking
task is more challenging than single-speaker tracking. There are two
reasons. On one hand, the GCC-PHAT feature is hard to be adapted
in the multi-speaker scenario [7]. The performance of GCC-PHAT
degrades significantly as the number of speakers increases [15]. On
the other hand, data association is needed to match the measurements
with the targets.

J. RESULTS ON REAL DATASET

We evaluate our methods on a real dataset, i.e. AVRI dataset [42],
which is recorded with a four-microphone array and KINOVA robot.
Compared to the simulated dataset, the real dataset is more com-
plicated, covering varying reverberation, noise and speaker motions.
The experimental results are shown in Table 7. It is shown that our
proposed method offers competitive performance as compared with
the state-of-the-art methods, despite having a smaller model size.
Both A-CRNN [7] and AV-CRNN [42] employ GCC-PHAT and
mel-spectrogram as audio features. In addition, both AV-CRNN [42]
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TABLE 7 Experimental Results on the AVRI Dataset

Model Modality MAE (°) Accuracy (%) Model Size (M)
STFT-ResNet [43] audio 17.21 67.63 6.315
GCC-MLP [5] audio 19.03 66.00 2.604
AV-MLP [8] audio-visual 17.55 68.78 2.647
A-CRNN [7] audio 791 79.28 7.713
AV-CRNN [42]  audio-visual ~ 7.58 79.72 7.715
CMAF [42] audio-visual ~ 7.26 80.86 3.825
Ours audio 8.70 78.05 0.298

The Baseline Results are Imported from [42].

and CMAF [42] use additional facial features, and achieve marginal
performance improvement. Our light-weighted model only takes
GCCPHAT as input, which reduces the computational complexity
and strikes a balance between performance and model complexity.

VI. CONCLUSION AND FUTURE WORK

We have presented a new end-to-end model for speaker tracking
by leveraging the conventional particle filter and the transformer
based learning architecture. The particle filter provides potential
explainability for the transformer, while the transformer offers a
strong measurement model for the particle filter. This combination
abandons the traditional pattern of tracking, which first extracts
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measurements and then feeds the measurements to the Bayesian
filter. Instead, it provides an end-to-end differentiable architecture.
Experiments on the simulated and real datasets show that the pro-
posed model offers improved modeling capacity and robustness to
long sequence and noise. However, there are limitations with the
proposed method. On the one hand, when the algorithm is used for
multi-speaker tracking, the maximum number of speaker needs to be
specified, which is unknown in some scenarios. On the other hand,
the model performance degrades in multi-speaker scenarios due to
the limitations of GCC-PHAT and the existence of data association
steps. In the future, we will improve the performance of the proposed
method for multi-speaker tracking. Motivated by insights in [44],
the resampling step can be optimized further, such as leveraging the
parallel processing to reduce the computational cost and adjust the
sampling frequency according to the degree of weight degeneracy to
mitigate the problem of sample impoverishment.
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